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Abstract

The objective of this paper is to investigate if the description of ocean uncertainties
can be significantly improved by applying a local anamorphic transformation to each
model variable, and by making the assumption of joint Gaussianity for the transformed
variables, rather than for the original variables. For that purpose, it is first argued that5

a significant improvement can already be obtained by deriving the local transformations
from a simple histogram description of the marginal distributions. Two distinctive advan-
tages of this solution for large size applications are the conciseness and the numerical
efficiency of the description. Second, various oceanographic examples are used to
evaluate the effect of the resulting piecewise linear local anamorphic transformations10

on the spatial correlation structure. These examples include (i) stochastic ensemble
descriptions of the effect of atmospheric uncertainties on the ocean mixed layer, and of
wind uncertainties or parameter uncertainties on the ecosystem, and (ii) non-stochastic
ensemble descriptions of forecast uncertainties in current sea ice and ecosystem pre-
operational developments. The results indicate that (i) the transformation is accurate15

enough to faithfully preserve the correlation structure if the joint distribution is already
close to Gaussian, and (ii) the transformation has the general tendency of increasing
the correlation radius as soon as the spatial dependence between random variables be-
comes nonlinear, with the important consequence of reducing the number of degrees
of freedom in the uncertainties, and thus increasing the benefit that can be expected20

from a given observation network.

1 Introduction

As a result of inescapable inaccuracies or approximations in the observations and
in the models, uncertainties are inherent to any description or simulation of the real
ocean. A realistic and efficient modelling of these uncertainties is of key importance25

for many oceanographic applications: (i) to objectively check simulation results against
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independent observations, (ii) to optimally assimilate data, and thus obtain the maxi-
mum benefit from an expensive, but incomplete, observing system, and (iii) to rationaly
design future observation networks. It is thus essential to the production and use of
ocean operational data, as delivered for instance by the MyOcean system1, which is
the target application of this study.5

Ensemble (or Monte Carlo) methods provide a good way of describing uncertainties
in ocean dynamical systems, by explicitly exploring how uncertainties in the governing
laws, parameters or forcings (the prior information) propagate to the observed quanti-
ties or to the operational products (Palmer et al., 2005; Lermusiaux, 2006). However,
even if an explicit stochastic modelling is used to solve a practical problem, there is10

often a strong temptation (in large size applications) to simplify the result using a Gaus-
sian model, because it is much more efficient (i) to describe the uncertainties (by the
mean and covariance), and (ii) to assimilate observations (using linear update formu-
las, as in the ensemble Kalman filter, see Evensen and van Leeuwen, 1996). Without
a prior assumption about the shape of the probability distribution, large size problems15

are indeed very complex in general (van Leeuwen, 2009; Bocquet et al., 2010), mainly
because the size of the sample that is required to identify a general multivariate distri-
bution increases exponentially with the number of dimensions (curse of dimensionality).
To circumvent this difficulty, one possible simplification is to look for univariate nonlinear
changes of variables (anamorphosis transformations) transforming the marginal distri-20

bution of each random variable into a Gaussian distribution. One-dimensional prob-
ability distributions can indeed be identified with a much smaller sample, and it may
well happen that such a separate transformation for each random variable also helps
improving the Gaussianity of their joint distribution (although this needs to be checked
in every practical application). This technique originates from geostatistics (Wacker-25

nagel, 2003) and was first introduced in oceanography by Bertino et al. (2003), in the
framework of the ensemble Kalman filter.

1http://www.myocean.eu.org/
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However, the studies presented in Bertino et al. (2003) and later in Simon and Bertino
(2009) were directly focused on the impact that anamorphic transformations may have
on the performance of the ensemble Kalman filter, without much emphasis on the im-
provements in the multivariate statistics. In this context, they also preferred to apply the
same transformation over the whole model domain (but different for each model vari-5

able), so that a much larger sample is available to identify the transformation function.
Yet, if the objective is also to propose a generic method (beyond the Gaussian scheme)
to improve the description of the uncertainties, which can be spatially inhomogeneous,
any practical possibility of extending this towards local anamorphic transformations
should be evaluated. In a recent paper, Béal et al. (2010) proposed a very simple10

algorithm to obtain such local transformations, and started evaluating its potential for
describing a 30-day ensemble forecast of the North-Atlantic ecosystem (simulating the
effect of wind uncertainties). However, the paper was exclusively focused on the im-
provement of local correlations (at given locations) between phytoplankton and the
other ecosystem compartments (nutrients, zooplankton), in the perspective of ocean15

colour data assimilation. Yet, with an algorithm working locally (i.e., transforming each
model grid point with a different anamorphosis function), it is also important to study
how the spatial correlations are modified, and hopefully improved, by the transforma-
tion.

The purpose of the present paper is thus to evaluate the effect of local anamorphic20

transformations on spatial correlations for various kinds of ocean uncertainties. The
studies includes, on the one hand, the stochastic ensemble description of the ocean
mixed layer response to atmospheric forcing uncertainties (Sect. 3), the ecosystem
response to wind uncertainties (i.e. the same application as in Béal et al., 2010, in
Sect. 4), and the ecosystem response to parameters uncertainties (Sect. 5). On the25

other hand, we also show examples of anamorphic transformations applied to the non-
stochastic ensemble description of forecast uncertainties in current pre-operational
developments for the sea ice component (Mercator system, Sect. 6) and for the
ecosystem component (MyOcean project, Sect. 7). In addition, before going to the
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applications, the paper includes a brief summary of the algorithm (presented in a more
deductive way than in Béal et al., 2010), with a quantitative discussion of the computa-
tional complexity and accuracy of the approximation (Sect. 2).

2 Anamorphosis transformations

The basic problem of the algorithm is to look for a nonlinear change of variable trans-5

forming a random variable X with known cumulative distribution function (cdf) F (x)=
p(X ≤x) into a new random variable Z with the target cdf G(z)=p(Z ≤ z). Elementary
probability calculus (e.g. Von Mises, 1964) provides a general solution for the forward
and backward transformations:

Z =G−1[F (X )] and X = F −1[G(Z)] (1)10

providing that F and G are invertible. In particular, if Z ∼U(0,1) is uniformly distributed
on the interval [0,1], with G(z)= z, then x = F −1(k/q) is the kth q-quantile of X ; and
if Z ∼N (0,1) is normally distributed, with G(z)= 1

2 [1+erf(z/
√

2)], then Eq. (1) defines
the forward and backward Gaussian anamorphosis transformation of the random vari-
able X (Wackernagel, 2003, Chapt. 33).15

However, it is important to keep in mind that transforming all variables of a random
vector using Eq. (1) can only ensure that the marginal distribution of each variable be-
comes Gaussian. This does not imply that their joint probability distribution becomes
a multivariate Gaussian distribution, which is the condition required to apply linear es-
timation techniques. As pointed out by Wackernagel (2003), it is thus important to20

check in practice that at least bivariate distributions of the transformed variables be-
come close to bi-Gaussian, so that linear inference may be close to optimal. It is the
purpose of the present paper to check this in various oceanic applications, by study-
ing how the transformation in Eq. (1), applied separately for every random variable, at
every spatial location, modifies the spatial correlation structure. But before going to25

the applications, this section is dedicated to describing the specific algorithm that we
2151

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/8/2147/2011/osd-8-2147-2011-print.pdf
http://www.ocean-sci-discuss.net/8/2147/2011/osd-8-2147-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
8, 2147–2195, 2011

Effect of local
anamorphic

transformations on
spatial correlations

J.-M. Brankart et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

have implemented to approximate Eq. (1) using a limited-size sample of the random
variables.

2.1 Efficient approximate algorithm

In the Monte Carlo estimation methods (like the ensemble Kalman filter), the prior prob-
ability distribution for the control variables is only approximately described by a finite-5

size sample. The anamorphosis transformation in Eq. (1) for each control variable
can thus only be approximately computed from the available sample using a nonpara-
metric estimate F̃ (x) of the exact marginal cdf F (x). The most simple nonparametric
estimate of a probability density function (pdf) f̃ (x)=dF̃ (x)/dx is the histogram (Izen-
man, 2008): a piecewise constant pdf f̃ (x), or a piecewise linear cdf F̃ (x). As a simple10

choice for the classes of the histogram, we may use prescribed quantiles x̃k , k =1,...,q
of the input sample, i.e. such that F̃ (x̃k)= rk , for a given set of rk (0≤ rk ≤1, rk < rk+1).
In this way, we can control explicitly the fraction of ensemble members (rk+1 − rk) in
each class of the histogram.

Then, with the same level of approximation, we can use the same histogram repre-15

sentation of the Gaussian distribution, i.e. a piecewise linear G̃(z) interpolating the true
Gaussian cdf between G(zk)= rk , k =1,...,q, so that the anamorphosis transformation
in Eq. (1) is also piecewise linear:

ϕforw(x)= G̃−1
[
F̃ (x)

]
= zk+

zk+1−zk
x̃k+1− x̃k

(x− x̃k) for x ∈ [x̃k ,x̃k+1] (2)

ϕback(z)= F̃ −1
[
G̃(z)

]
= x̃k+

x̃k+1− x̃k
zk+1−zk

(z−zk) for z ∈ [z̃k ,z̃k+1] (3)20

This approximate transformation (heuristically proposed by Béal et al., 2010) remaps
the quantiles x̃k , k =1,...,q of the input sample on the corresponding Gaussian quan-
tiles zk , k = 1,...,q, and interpolates linearly between them. It is bijective between the
interval [x̃1,x̃q] and [z1,zq], providing that the quantiles x̃k are distinct: x̃k 6= x̃k+1 ∀k
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(see Sect. 2.3 for a discussion of the degenerate cases x̃k = x̃k+1, and for possible
parameterizations of the tails of the probability distributions: x /∈ [x̃1,x̃q]).

2.1.1 Example

Figure 1 shows for instance the approximate Gaussian anamorphosis transformation
that is obtained with Eq. (2) using a 200-member random sample of the Gamma distri-5

bution X ∼Γ(k,θ), with k =4.236 and θ=0.309 (chosen so that the mode is equal to 1,
and the 95 % percentile is equal to 2.5). The classes of the histogram for X are defined
using the 10-quantiles (or deciles) of the random sample: rk = k/q, with q= 10. They
are remapped on the Gaussian deciles zk (histogram on the left) using the piecewise
linear transformation (blue curve), which is here not far from the exact transformation10

(red curve), given by Eq. (1). With this definition of rk , there is the same number of
random draws in each class of the histogram.

2.1.2 Computational complexity

The first reason why such a simple approximation of the Gaussian anamorphosis may
be useful in practical ocean applications is that it can be performed at a numerical15

cost that is usually much smaller than the numerical cost of a Gaussian observational
update (e.g. the analysis step of the ensemble Kalman filter). In the identification of the
approximate transformation in (2), the main cost is associated to the computation of the
quantiles x̃k of the input sample. If m is the size of the sample, this cost is proportional
to mlogm, to sort the sample values. Then, if n is the size of the control vector (i.e.,20

the number of random variables to transform), the total computational complexity to
identify the functions ϕforw and ϕback in Eqs. (2) and (3) is:

Cquantiles ∼nmlogm (4)

In addition, in order to perform the observational update, one must apply the transfor-
mation to the ensemble forecast and to the observations. Each transformation requires25
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localizing the input value among the quantiles x̃k (with complexity proportional to log2q
with a bissection method), and then applying the corresponding linear transformation
in Eq. (2) (i.e. about 3 operations). To transform the ensemble of m control vectors,
together with the y observations values, and then the updated ensemble back in the
original control space, this corresponds to a computational complexity of:5

Canamorphosis ∼ (2mn+y)(3+α log2q) (5)

where α stands for the relative numerical cost between numerical comparisons
(needed to localize values in the list of quantiles) and algebraic operations (needed
to compute the linear transformations). Transforming the observations simply requires
applying the observation operator to the quantiles of the control vector, but if some10

observations are nonlinearly linked to the control vector, it may be better to augment
the control vector with these observations (thus producing a problem with larger n) and
transform them using their own anamorphosis transformation.

On the other hand, this simple algorithm does not require a lot of memory or disk
space to store the approximate functions ϕforw and ϕback: only the quantiles of the15

input ensemble x̃k , k = 1,...,q need to be stored, for a total storage of qn real values
(i.e., less than the storage of the forecast ensemble itself, which requires storing mn
real values). See the Appendix for more details about the practical implementation of
the algorithm.

2.2 Accuracy of the approximation20

The second reason why such a simple approximation may be useful in practical ocean
applications is that the accuracy of the approximation is generally sufficient to sub-
stantially improve the description of the marginal distributions. The accuracy of the
approximation given by Eq. (2) mainly depends on the accuracy of the histogram de-
scription of f (x), which is related to the size of the sample and to the definition of the25

classes of the histogram by the quantiles x̃k . With too many quantiles, we are likely
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to introduce spurious features in the transformed pdf (not resolved by the available en-
semble), and with too few quantiles, we will smooth out significant features. Thus, for
a given distribution and a given sample size, there exists an optimal resolution of the
quantiles giving the best approximation for the transformation.

For the example of Fig. 1, we computed the approximate anamorphosis transforma-5

tion from the same 200-member sample and for several resolution of the histogram
(q= 3 to 50 with regular quantile discretization: rk = k/q, k = 0,...,q). Then, we trans-
formed the exact prior distribution Γ(k,θ) using these various approximations and com-
puted the relative entropy (as a measure of the discrepancy between two pdfs, see for
instance Bocquet et al., 2010) between the resulting transformed pdfs and the tar-10

get transformed pdf N (0,1). Figure 2 (left panel) shows that there is indeed an optimal
number of quantiles (q=9), which is close to the choice that we made in Fig. 1 (q=10).

2.2.1 Gaussian mixture

Other estimates of the transformation function can be obtained using more sophis-
ticated nonparametric estimates of f (x), for instance by approximating the unknown15

pdf by a mixture of Gaussian kernels (Izenman, 2008) rather than a mixture of uni-
form kernels (as in the histogram approximation). A common algorithm to estimate the
Gaussian mixture from the available sample can be derived from the nearest neighbour
method (e.g. Silverman, 1986; Izenman, 2008): each member of the sample is used
as the mean of one of the superposed Gaussian pdfs, with a variance equal to the20

variance of the q nearest neighbours. As in the histogram approximation, there is an
optimal q below which spurious features are introduced in the pdf estimate, and above
which significant features are smoothed out.

Figure 2 (middle panel) shows however that this optimal q (minimizing the relative
entropy) produces an estimate of f (x) that is not better than the best histogram (even25

if the behaviour as a function of q is more regular). Moreover, the numerical cost of
the transformation, requiring numerical root-finding in the integral of the superposed
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Gaussian pdfs (to solve the equation F̃ (x)= G̃(z)), would be much too high to be af-
fordable in large size applications.

2.2.2 Polynomial development

Another way of constructing a direct approximation of the anamorphosis transforma-
tion (described in Wackernagel, 2003) is (i) to approximate F (x) by the cumulative5

histogram F̃ (x)=α/m for x ∈ [x(α),x(α+1)] where x(α), α = 1,...,m is the ordered sam-
ple (i.e., a step function instead of a piecewise linear function in the approximation
above), (ii) to deduce the corresponding transformation as G−1[F̃ (x)]=G−1(α/m) for
x ∈ [x(α),x(α+1)], or reciprocally, to construct an empirical anamorphosis transformation

as F̃ −1[G(z)]= x(α) for z ∈ [G−1(α−1
m ),G−1( αm )] (i.e., again a step function, which is not10

bijective by construction), and (iii) to interpolate this empirical anamorphosis transfor-
mation by a limited development in Hermite polynomials (see Wackernagel, 2003, for
more detail about this algorithm). The qth order Hermite development can be shown to
be the best qth order approximation (of the transformation function) in the least square
sense (Wackernagel, 2003), but nothing guarantees that the polynomial interpolation15

will produce a bijective transformation, as it should be, so that ad hoc corrections must
be supplied if problems occurs. (To avoid this problem, Simon and Bertino, 2009, lin-
early interpolate the step function instead of the development in Hermite polynomials.)

Figure 2 (right panel) shows the relative entropy between the transformed pdf ob-
tained with this method and the exact pdf, as a function of the truncation order q in20

the development of Hermite polynomials. Again, there exists a best truncation order
q = 21, which is not more accurate than the histogram best estimate (shown on the
left panel). These results suggest that, with a moderate size sample (200 members in
this example), it is not easy to do better than the simple histogram approximation, and
that more sophisticated (and more expensive) algorithms, like the Gaussian mixture25

or the polynomial development, need a substantial increase in the sample size before
producing a significant benefit.
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2.3 Extensions of the algorithm

The algorithm described above is sufficient and well-conditioned as soon as (i) the cdf
F (x) of every control variable is invertible (so that the quantiles of the ensemble are
distinct), (ii) the range of possible value for every control variable is finite (between x1
and xp), and (iii) the size m of the ensemble is large enough to provide a reasonable5

approximation F̃ (x) of the marginal distributions. The purpose of this section is to
examine what may be done if these 3 conditions are not verified.

2.3.1 Probability concentrations

A cdf F (x) is not invertible if it makes a vertical step at some value x = xc, i.e. if there
is a probability concentration for x=xc, with finite probability: p(xc)= F (x+

c )−F (x−
c ). In10

this case, several ensemble members may be equal to xc [mp(xc) members in average]
so that a subset of the quantiles (between x̃l and x̃u) may also be equal to xc, and the
piecewise linear approximation of the anamorphosis transformation is no more bijective
(zero denominator in Eq. 2). This occurs very often in practice, especially if there
is a physical constraint on the value of the random variable, so that probability may15

concentrate on the constraint: sea temperature equal to freezing point, zero tracer
concentration (see examples in Sects. 4, 5 and 7), ice fraction equal to 0 or 1 (see
example in Sect. 6), ice velocity equal to 0 (no motion), . . .

The most direct solution to this problem (applied in all applications below, except in
the Mercator applications in Sect. 6) is to transform xc to the middle of the step of the20

piecewise linear function: G̃−1[F̃ (xc)]= 1
2 (x̃l + x̃u). A difficulty with this simple scheme

is that it can introduce spurious discontinuities in the transformed vector (for instance
in the transformed ice concentrations, at the border of the ice pack in the example
of Sect. 6), and it may be preferable to restore the bijectivity of the transformation
by introducing an artificial slope in the function. A simple way to do it is to replace25

the quantiles x̃l to x̃u (all equal to xc) by interpolating them between x̃l−1 and x̃u+1
(between x̃1 and x̃u+1 if l = 1, or between x̃l−1 and x̃q if u=q). This can improve the
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continuity and the quality of the linear estimates in the transformed space (see Sect. 6),
at the price of a slight spreading of the backward transform around the concentration
value xc (above xc if l =1, or below xc if u=q).

2.3.2 Tails of the distribution

Since the range of possible values for the Gaussian random variable Z is between −∞5

and +∞, the backward transformation in Eq. (3) must also specify how to transform z <
z1 and z >zq. If the range of possible values for the original random variable X is finite
between xmin and xmax, and fully resolved by the available ensemble (so that x̃1 =xmin
and x̃q = xmax), then we can be certain that the cumulated probability corresponding
to z < z1 and z > zq is concentrated at x = xmin and x = xmax, so that the backward10

transformation may be written:

ϕback(z)= x̃1 for z <z1 (6)

ϕback(z)= x̃q for z >zq (7)

But if the range between xmin and xmax (possibly infinite) is not fully resolved by the
available ensemble, a solution must be provided to map [−∞,z1] on [xmin,x̃1], and15

[zq,∞] on [x̃q,xmax].
The most simple parameterization of the tails of F (x) (used in all applications be-

low) is to assume zero probability outside the range of the ensemble forecast (as in
Béal et al., 2010). Again, this corresponds to assuming that the cumulated probability
corresponding to z < z1 and z > zq is concentrated at x = xmin and x = xmax, so that20

the backward transformation is approximated by Eqs. (6) and (7). On the other hand,
any x found outside of the interval [x̃1,x̃q] is viewed as impossible and transformed as
the closest value:

ϕforw(x)= z1 for x < x̃1 (8)

ϕforw(x)= zq for x > x̃q (9)25
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Parameterizing the tails of F (x) by probability concentrations at x̃1 and x̃q means that
the resulting transformation cannot be bijective outside of the interval [x̃1,x̃q]. However,
if the available ensemble is large enough and consistently sampled (without bias) from
the prior probability distribution, these tails must correspond to a very small cumulated
probability. Moreover, if little is known about the extreme behaviour of the system,5

Eqs. (6)–(9) may be a safe way of avoiding any kind of extrapolation outside the range
of values that has been explored by the ensemble.

More sophisticated assumptions about the tails of F (x) can nevertheless be easily
implemented. See for instance Simon and Bertino (2009) for a Gaussian parameteri-
zation (requiring that xmin or xmax be infinite).10

2.3.3 Sample enrichment

In many practical applications, it may be very expensive to increase the ensemble
size m until the accuracy of the approximation is sufficient to improve (or at least not
deteriorate) the Gaussianity of the marginal distributions. In such circumstances, and
providing that F (x) is slowly varying in space, a better accuracy of F̃ (x) at a given15

location x can certainly be obtained (for a moderate size m) by augmenting the sample
that is available at x, with the samples that are available in the neighbourhood of x
(possibly with a decreasing weight as a function of the distance from x). However, the
definition of this neighbourhood (which should decrease with m) introduces a subjective
parameter in the algorithm, which can only be optimized by checking the accuracy20

of the results. This is why no enrichment of the sample is used in the applications
below (except in the Mercator application in Sect. 6), where we preferred to stick to the
theoretical formulation (converging for m→∞) of separate transformations for distinct
random variables (Wackernagel, 2003).

Finally, it is important to remark that such a spatial extension of the sample is by no25

way necessary to ensure the spatial smoothness of the approximate solution described
in Sect. 2.1. If all ensemble members x(α) are spatially smooth, their quantiles x̃k and
thus the anamorphosis transformation in Eqs. (2) and (3) will be spatially smooth as
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well (see applications below), so that no spurious discontinuity is introduced in the
multivariate probability distribution. On the contrary, one should certainly be careful
enough to check that the sample extension described above does not smooth out real
discontinuities (or sharp gradients) from the statistics. Again, what really matters to
apply linear estimation methods is that the joint probability distribution for all control5

variables, at every spatial location x, is better described by a multivariate Gaussian
distribution if the nonlinear change of variables proposed in Eq. (2) is applied. It is
precisely the purpose of the following examples to show that such local anamorphic
transformations may yield a far better model for various kind of ocean uncertainties.

3 Mixed layer response to atmospheric forcing uncertainties10

As a first example, we study the stochastic response of the ocean mixed layer to un-
certainties in the atmospheric parameters that are used to define the surface boundary
condition of the ocean model (i.e., the momentum, heat and fresh water fluxes). In
many respects, the ensemble model forecast that we use here to illustrate the effect of
anamorphosis transformations is similar to the ensembles that are used in Skandrani15

et al. (2009) to estimate corrections in the atmospheric parameters using oceanic ob-
servations (without anamorphosis), because (i) we use the same low resolution global
ocean configuration (ORCA2) of the NEMO-OPA model (Madec and Imbard, 1996),
with a 2◦×2◦ ORCA type horizontal grid (reduced to a 1/2◦ meridional grid spacing in
the tropical regions), and 31 z-coordinate levels along the vertical (10 m resolution in20

the first 120 m to 500 m at the bottom), and (ii) the random parameters perturbations
are drawn from a Gaussian probability distribution with zero mean and a covariance
derived from their natural variability. However, the ensemble that we describe here
(performed by Meinvielle, 2011) is also somewhat different because (i) the reference
atmospheric parameters are obtained from the ERA-interim dataset instead of NCEP,25

with the objective (not discussed here) of estimating parameter corrections for long
term model simulations (The DRAKKAR Group, 2007), (ii) the parameter perturbations
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now include the wind, and are assumed constant over monthly periods, rather than
weekly periods (to estimate lower frequency parameter corrections), and (iii) the covari-
ance of the perturbations is set to the covariance of the ERA-interim monthly means
(from 1989 to 2007) for the 3 months surrounding the month of interest, rather than the
full covariance of the parameter variability in Skandrani et al. (2009). In the following,5

we focus our study to the one-month and 200-member ensemble model forecast that
is produced for January 2004, and we look at the mixed layer response, averaged over
the one-month time period, in terms of sea surface temperature (SST), sea surface
salinity (SSS) and mixed layer depth (MLD).

Figure 3 shows for instance the resulting ensemble correlation structure with respect10

to SST at 114◦ W 0◦ N (Eastern Equatorial Pacific), without anamorphosis (left panels),
and after local anamorphosis transformations (right panels) based on the deciles of the
ensemble forecast (as in Fig. 1). What we observe is that the SST horizontal correla-
tion structure is (almost) not modified by the local transformations. This occurs here
because the ensemble model response to Gaussian parameter perturbations is already15

very close to Gaussian, so that the ensemble deciles for SST, at every location, are all
remapped on the deciles of N (0,1) along a straight line. Conversely, this means that
the approximate algorithm described in Sect. 2, with piecewise linear transformations
based on a histogram description of the probability distributions, is accurate enough
(with 200 members) to faithfully preserve the linear correlation structure between ran-20

dom variables that are already close to Gaussian. This Gaussian behaviour is also the
reason why Skandrani et al. (2009) were able to infer relevant parameter corrections
from SST (and SSS) using a Gaussian observational update algorithm (complemented
by the truncated Gaussian assumption of Lauvernet et al., 2009, to avoid extreme and
nonphysical corrections).25

However, the situation becomes different if we look at the ensemble model response
in terms of MLD. Figure 4 shows for instance the correlation structure with respect to
MLD at the same location (114◦ W 0◦ N in Eastern Equatorial Pacific), without anamor-
phosis (left panel), and with the same local anamorphic transformation as above (right
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panels). What we observe is that, for both displayed variables (MLD and SST), the
horizontal correlation patterns are not really altered by the local transformations (same
smoothness, same shape, same kind of anisotropy), but the correlation radius is sub-
stantially increased in all directions: the area inside which the correlation (or anticorre-
lation) is above 70 % is increased by 50 % for MLD and 62 % for SST. This means that5

the MLD response to Gaussian parameter perturbations is not Gaussian, as illustrated
in Fig. 5 (left panel) by a scatterplot of MLD vs. SST at 114◦ W 0◦ N. As a consequence,
the joint distribution of MLD and SST cannot be bi-Gaussian, as visually obvious from
the clear nonlinearity of the regression line (i.e., the line of maximum MLD probabil-
ity for every given SST). In the transformed variables (Fig. 5, right panel), even if the10

marginal distribution for each variable is now close to Gaussian (by construction), the
joint distribution is still not bi-Gaussian (larger MLD dispersion for small SST than for
large SST). But a least the regression line is now close to linear, with the direct conse-
quence of increasing the linear correlation coefficient. This phenomenon explains why
the spatial correlation structure can only be improved by consistent local anamorphic15

transformations, even if the algorithm is not perfectly accurate (as the piecewise linear
approximation). The improvement of the MLD spatial correlation structure also sug-
gests that anamorphosis transformations might be an interesting ingredient to obtain
better MLD climatologies, enhancing the accuracy of the linear estimation methods and
the description of the final product (by the median and a set of quantiles, rather than20

the usual minimum variance estimate, which is not really meaningful in this case).
This first example already illustrates the two main conclusions of this paper about the

effect of local anamorphic transformations on the spatial correlation structure: (i) the
transformation is accurate enough to faithfully preserve the correlation structure if the
joint distribution is already close to Gaussian, and (ii) the transformation has the gen-25

eral tendency of increasing the correlation radius as soon as the spatial dependence
between random variables becomes nonlinear. With the next examples, we further
investigate the same effects in presence of the more complex and heterogeneous non-
Gaussian behaviours that may occur in ecosystem or sea-ice models.
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4 Ecosystem response to wind uncertainties

As a second example, we study the stochastic response of a coupled physical-
biogeochemical model (CPBM) of the North Atlantic to uncertainties in the wind forc-
ing. For that purpose, we use the same 200-member ensemble forecast as in Béal
et al. (2010): (i) the CPBM (originally developed by Ourmières et al., 2009) couples5

a 1/4◦ resolution circulation model of the North Atlantic (a Drakkar configuration of the
NEMO/OPA model, The DRAKKAR Group, 2007) with the LOBSTER (LOcean Bio-
geochemical Simulation Tools for Ecosystem and Resources, Lévy et al., 2005) bio-
geochemical model, with 6 prognostic variables in the euphotic layer: phytoplankton
(PHY), zooplankton (ZOO), nitrate (NO3), ammonium, detritus, and semi-labile dis-10

solved organic nitrogen; (ii) the ensemble forecast is initialized at the beginning of the
spring bloom on 15 April 1998, using the model simulation described in Ourmières et al.
(2009); and (iii) the random wind perturbations are sampled from a Gaussian proba-
bility distribution, with zero mean and a covariance derived from the ERA40 variability
(during the 3 months centered on 15 April, with a superimposed 4-day decorrelation15

times scale, see Béal et al., 2010, for more details). However, whereas the study by
Béal et al. (2010) was exclusively focused on the multivariate response of the coupled
model at given horizontal locations (with or without anamorphosis transformations, and
for several forecast timescales between 1 and 30 days), we here complement their
work, by documenting the effect of the local anamorphic transformations on the hori-20

zontal correlation structure (in the 4-day forecast only).
In the ensemble forecast, the main impact of the random wind perturbations on the

ecosystem results from the deepening and shallowing of the mixed layer, which mod-
ifies the nutrient supply and thus the primary production in the euphotic layer. This
mechanism produces a quite heterogenous response in terms of phytoplankton con-25

centration, as illustrated in Fig. 6 by three deciles of the ensemble (corresponding to
rk = 0.2, 0.5 and 0.8, top panels) and one of the ensemble members (bottom panels).
The wind can indeed only trigger a large ensemble dispersion (i.e., large differences

2163

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/8/2147/2011/osd-8-2147-2011-print.pdf
http://www.ocean-sci-discuss.net/8/2147/2011/osd-8-2147-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
8, 2147–2195, 2011

Effect of local
anamorphic

transformations on
spatial correlations

J.-M. Brankart et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

between the deciles, in the top panels) in areas where the spring bloom has already
started, like primarily the Gulf Stream pathway, the Irminger Sea and the western half
of the Labrador Sea, and secondarily, the northern half of the North Sea, the Gulf of
Lions and the Bay of Biscay. Conversely, in the areas where the primary production is
weak (as in the subtropical gyre and in the Norwegian Sea), it remains weak, whatever5

the wind perturbations.
Furthermore, one particular ensemble member (Fig. 6, bottom left panel) may be

well below the median in some regions (e.g. in the Labrador Sea) and well above the
median in other regions (e.g. in the Irminger Sea). This phenomenon is more obvious
if we look at the rank of this ensemble member in the ensemble forecast (Fig. 6, bottom10

middle panel). More precisely, what is shown is the rank divided by the ensemble size
(to be between 0 and 1), which corresponds to the local anamorphic transformation
of the ensemble member using the uniform distribution U(0,1) as a target distribution.
For instance, a value below 0.2 means below the second decile (r2 = 0.2), a value be-
low 0.5 means below the median (r5 =0.5), etc. In this figure, we can see immediately15

where this ensemble member is high or low with respect to the others (compare the
rank in the Labrador Sea and in the Irminger Sea), even in regions where the disper-
sion of the ensemble is very small, as along the coast of Africa or in the southern half of
the North Sea. See also how the high rank region in the Irminger Sea (i.e., with a pro-
duction well above the ensemble median) embeds indifferently areas of high primary20

production and areas of low production, as a result of a strongly positive wind anomaly
covering the whole region. The rank may thus better translate the effect of a homo-
geneous perturbation, which is masked in the original variable by the heterogeneity of
the ecosystem dynamics. And from the local rank (Fig. 6, bottom middle panel) to the
local Gaussian anamorphic transformation of the same ensemble member (Fig. 6, bot-25

tom right panel), there is nothing but a global anamorphosis transforming U(0,1) into
N (0,1). The figure thus looks very similar, with the same nonlinear change of variable
at every grid point (we could have kept the same figure, with a nonlinear labelling of
the colorbar).
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Figure 7 illustrates the effect of these transformations on the PHY (top panels) and
NO3 (bottom panels) horizontal correlation structure with respect to PHY at 37.5◦ W
50.8◦ N (North Atlantic), as obtained for the original variables (left panels), their local
rank in the ensemble (middle panels), and the transformed variables after Gaussian
anamophosis (right panels), based on the deciles of the ensemble forecast. The first5

thing that we observe is that, despite of the deep changes in the horizontal structure of
each ensemble member (illustrated in Fig. 6, bottom panels), the general shape of the
correlation is still not much altered by the transformations. A linear measure of correla-
tion (Fig. 7, left panels) is already quite good in this case, because it is not influenced
by the heterogeneity of the ensemble variance, which is here the main reason for the10

changes in the horizontal structure of the ensemble members observed in Fig. 6 (bot-
tom panels). Going to a nonlinear measure of correlation (like the rank correlation, in
the middle panels of Fig. 7) is only useful if the transformation can help linearizing the
regression line between the two random variables (as illustrated in Fig. 5). The rank
correlation was indeed introduced by Spearman (as explained by Von Mises, 1964) to15

produce this effect and thus to go beyond the linear correlation coefficient (of Pearson),
as a measure of the (nonlinear) dependency between random variables. Furthermore,
since the linear correlation structure after a local Gaussian anamorphosis is very sim-
ilar to rank correlation (compare right and middle panels in Fig. 7), this explains why
the correlation radius is generally increased by the transformation (compare with left20

panels, in which the area with a correlation above 80 % is about 26 % smaller for PHY
and 35 % smaller for NO3). The same kind of phenomenon can be observed in Fig. 8,
showing the same result at 20◦ W 35◦ N, except that the rank correlation is not shown
anymore since it is always very similar to the linear correlation structure after Gaussian
anamorphosis. However, we can see that here, the NO3 horizontal correlation struc-25

ture (bottom panels) is deeply modified by the transformation, becoming more similar
(in shape and extension, but with the opposite sign) to the PHY horizontal correlation
structure (top panels). This is also related to the improvement of the correlation be-
tween NO3 and PHY at every horizontal location (which was described in Béal et al.,
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2010), and further supports the idea that local anamorphic transformations may sub-
stantially increase the benefit that can be expected from ocean colour observations in
the multivariate estimation of the state of the ecosystem.

5 Ecosystem response to ecosystem parameters uncertainties

As a third example, we study the stochastic response of the same CPBM to uncer-5

tainties in the parameterization of the ecosystem model. For that purpose, we use the
200-member ensemble that has been performed by Doron et al. (2011) to evaluate the
potential of ensemble methods to estimate a few ecoystem parameters using ocean
colour observations (with or without anamorphosis). This ensemble forecast is identi-
cal to that described in the previous section (same model, same forcing, same initial10

condition), except that the random perturbations are applied to a few ecosystem param-
eters rather than to the wind forcing. Three rate parameters are assumed uncertain in
the ensemble forecast: (i) the maximum growth rate of phytoplankton, (ii) the maximum
grazing rate of phytoplankton by zooplankton, and (iii) the phytoplankton mortality rate.
The uncertainties for these three parameters are assumed independent and constant15

over each of the 13 North Atlantic biogeochemical provinces (defined by Longhurst,
1995), which makes a total of 3×13= 39 independent random parameters. And the
probability distribution for each of these parameters is assumed to be a Gamma distri-
bution, with a mean equal to the default parameter value in the LOBSTER model, and
a 95 % percentile equal to 2.5 times the mode of the distribution (as in Fig. 1, see Doron20

et al., 2011, for more details). In the following, we describe the correlation structure of
the model response to these uncertainties after a 1-month ensemble forecast (instead
of a 4-day forecast in the previous example).

Figure 9 shows for instance the PHY (top panels) and NO3 (bottom panels) horizon-
tal correlation structure with respect to PHY at 11.7◦ W 36◦ N (in the Longhurst province25

west of Spain and North Africa), as obtained without anamorphosis (left panels) and
after local anamorphosis transformations (right panels), based on the deciles of the
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ensemble forecast. The first thing to observe is that the correlation is mostly significant
inside the Longhurst province (materialized by the black line) with constant parameters
perturbations, which means (i) that the ensemble size is sufficient to decorrelate inde-
pendent behaviours, and (ii) that, even after 1 month, the effect of the parameter uncer-
tainties is here mainly local (the main exceptions being the intense mesoscale activity in5

the north-western corner of the province, and the southward advection along the coast
of Africa). However, inside the Longhurst province, the response of the ecosystem to
the homogeneous parameters uncertainties is far from being the same everywhere, as
a result of the heterogeneity of the initial condition and physical forcing. It is also clearly
nonlinear, in view of the strong impact of the anamorphosis transformation on the hor-10

izontal correlation structure. As in Fig. 8, the NO3 correlation structure becomes very
similar (with an opposite sign) to the PHY correlation structure (Fig. 9, right panels),
even though without anamorphosis (Fig. 9, left panels), the two variables were only
weakly correlated.

Figure 10 shows the same kind of result as Fig. 9 in the Longhurst province cover-15

ing the Caribbean Sea and the Gulf of Mexico, with a reference point located at 86◦ W
23.8◦ N in the inside of the Loop Current. Here, the impact of advection is more obvi-
ous: (i) along the eastern coast of Florida, where the effect of the parameter perturba-
tion inside the Longhurst province (delimited by the black line) is advected by the Gulf
Stream, and (ii) in the Gulf of Mexico, where the ecosystem response to the parame-20

ters uncertainties decorrelates across the front defined by the Loop Current. However,
even if the heterogeneity of the ecosystem behaviour across the Loop Current is clearly
due to differences brought by advection, the decorrelation across the front also results
from the nonlinearity of the ecosystem response to the same parameters perturbations.
This is why a nonlinear measure of correlation (i.e., the linear correlation coefficient for25

the transformed variables, in the right panels) can be much larger than the linear cor-
relation coefficient (for the original variables, in the left panels), going from below 0.4
to above 0.6 for PHY (the opposite sign for NO3) in a large part of the Gulf of Mexico.
It is also interesting to remark the modifications along the western coast of the Gulf of
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Mexico, where a zero linear correlation transforms either to (i) a negative correlation
with PHY and a positive correlation with NO3 in the southern half of the coastal band,
(ii) a negative correlation with both PHY and NO3 in the northern half, or (iii) a pos-
itive correlation with PHY and a negative correlation with NO3 (as in the rest of the
domain) at the mouth of the Rio Grande. All these increases of linear correlation (or5

anticorrelation) contribute to simplify the Gaussian description of the uncertainties (in
the transformed variables vs. the original variables), by concentrating a larger fraction
of the total variance in a smaller dimension subspace, thus reducing the number of de-
grees of freedom that must be controlled to obtain a given accuracy. This simplification
is certainly one of the main reasons for which local anamorphic transformations were10

so helpful in the work of Doron et al. (2011) to estimate the 39 unknown parameters
from ocean colour observations (in a twin experiment approach, without localization of
the ensemble covariance).

6 Modelling ice forecast uncertainties

In this section, we are moving to another class of examples, in which non-stochastic15

ensembles are used to describe forecast uncertainties. In many situations indeed,
the forward model is too expensive to allow the explicit Monte Carlo exploration of
the uncertainties. Assumptions are then needed to produce the required ensemble of
model states, using for instance an appropriate sample of the past system variability.
The purpose of this section (and of Sect. 7) is to show that, even in such a case, local20

anamorphic transformations may be useful to go beyond the Gaussian model.
As a first example of this kind, we study the non-stochastic ensemble description of

sea-ice forecast uncertainties that is currently tested for assimilating sea-ice observa-
tions in the Mercator/MyOcean operational system. To construct the ensemble, it is as-
sumed that the forecast uncertainties have the same statistics as the combined effect of25

the forward model short term and interannual variabilities. More precisely, to describe
the uncertainties at a given date (e.g. 15 June 2011), we sample a past interannual
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free model simulation (17 yr, between 1991 and 2007) every 3 days in a running win-
dow of ±66 days around that date (thus retaining 44 model states, every year), which
make an ensemble of size m= 17×44 = 748 model states. This assumption means
that we do not try to resolve anything else than the seasonal cycle in the description of
the uncertainties. This might look quite crude if we forget that this is applied to a 1/4◦

5

resolution global configuration of the NEMO model, and already tested with a 1/12◦

resolution prototype. The size of these systems makes truly stochastic solutions (with
sufficient ensemble size) unaffordable with present-day computational facilities, so that
the above solution can actually be considered as quite sophisticated. In the following,
we focus our study on the resulting description of the uncertainties (as obtained from10

the 1/4◦ resolution model) for the ice fraction f , which is the (well-observed) model
variable giving the fraction of the ocean that is covered by sea-ice. It is defined in the
interval between f =0 (no ice) and f =1 (no free water).

Because of this bounded interval, it is already clear that the Gaussian model is not
appropriate to describe uncertainties in ice concentrations. Moreover, the probability15

density function is usually maximum at one of these bounds (at f =1 in the middle of the
ice pack, or at f = 0 at the borders), or even at both (U-shaped pdf), which makes the
Gaussian model even less appropriate. Furthermore, the two extreme values (f = 0
or f = 1) can often concentrate a finite probability, which means that the cdf of ice
concentration makes a step at f = 0 or f = 1 (as explained in Sect. 2.3). Figure 1120

shows for instance the probability that the ocean is free of ice (f =0), as computed from
the ensemble for 15 March (left panel) and 11 September (right panel). In practice, the
value of this probability is computed as the fraction of the ensemble members for which
f =0. In this computation, we also applied the sample enrichment method described in
Sect. 2.3, by concatenating in the local description of the probability distribution all ice25

concentration values in a window of 9×9 grid points. The total ensemble size at each
horizontal location is thus equal to m=81×748=60 588. The effect of this enrichment
of the ensemble is to slightly smooth the probability maps displayed in Fig. 11, but in
view of the approximations that are made in the construction of the original ensemble,
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there was no reason here to stay perfectly local, while the enrichment may be a good
way of mitigating the inaccuracies that are related to the limited size of the available
ensemble. In Fig. 11, the resulting probability increases from p(f =0)=0 in the interior
of the ice pack, where a zero ice concentration is impossible, to p(f = 0)= 1 outside of
the ice pack, where a zero ice concentration is certain (according to our assumption5

about the uncertainties). In the Arctic, it is also generally much larger in September
(minimum ice extension) as compared to March, which shows the primary importance
of resolving the seasonal cycle in the description of the probability distributions.

Strictly speaking, in presence of such probability concentrations (at f = 0 in Fig. 11),
a Gaussian anamorphosis transformation is not possible, since the cdf in Eq. (1) is not10

invertible. In our example, this means that several quantiles of the ensemble are equal
to f = 0, so that the piecewise linear approximation in Eq. (2) is not defined (zero de-
nominator if x̃k = x̃k+1). This is why, in this example, we need to apply the approximate
solution described in Sect. 2.3, which consists in modifying the quantiles of the ensem-
ble that are equal to 0, by interpolating them between f =0 and the first non-zero quan-15

tile. In this particular case, this approximation amounts to replacing the Dirac at f = 0
in the exact pdf by a boxcar function between f = 0 and the first non-zero quantile, cu-
mulating the same total probability as the Dirac. (Any other function to approximate the
Dirac is possible by modifying the interpolation of the quantiles.) In this way, we restore
the applicability of anamorphosis by transforming the non-invertible cdf into an invert-20

ible cdf, at the price of a slight spreading of the probability that is actually concentrated
at f = 0. It would of course be better to keep the exact description of the probability
concentrations, but it is also very useful for data assimilation to find new variables for
which the Gaussian model is (at least approximately) valid, because it makes the ob-
servational update of the prior probability distribution (with linear formulas) numerically25

much more efficient. And to describe the marginal probability distributions for ice con-
centrations, the above approximation is certainly much better than using a Gaussian
model for the original variables (i.e., without anamorphic transformations).
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Now, as in the previous examples, we turn to evaluating the effect of these local
anamorphic transformations on the joint probability distribution by looking at the linear
correlation structure. Figure 12 shows for instance the horizontal correlation structure
for ice concentration with respect to a reference location at 15◦ W 75◦ N (north-east
of Greenland). In the figure, we observe first that the correlation structure is very5

anisotropic, as a consequence of the southward ice flow along the coast of Greenland,
and that the correlation distance is larger in March (Fig. 12, top panels) as compared
to September (Fig. 12, bottom panels), as a result of the larger extension of the ice
pack (see Fig. 11). However, in both cases, the effect of anamorphosis (in the right
panels) is mainly to increase the correlation distance. In March, the correlation radius10

mainly increases in the cross-flow direction, because it is across the front that non-
linear dependences between the variations of ice concentrations mainly occur. And
in September, the correlation radius mainly increases in the direction of the ice flow,
because the reference point is then located close to the southmost edge of the ice
extension. As a secondary effect, the anamoprhosis transformations also tend to re-15

move the spurious correlations with the exterior of the ice pack (where the probability of
a zero ice concentration is close to 1). Hence, we can certainly conclude that, in addi-
tion to significantly improving the description of the marginal probability distributions for
ice concentration (in the interval between 0 and 1), local anamorphic transformations
are not detrimental to the description of the horizontal correlation structure, and may20

even help representing nonlinear dependences between distant ice behaviours.

7 Modelling ecosystem forecast uncertainties

As a second example of non-stochastic ensemble, we study the description of ecosys-
tem forecast uncertainties that has been used in the MyOcean project (by Fontana
et al., 2011) to assimilate ocean colour data in the NEMO/LOBSTER 1/4◦ resolution25

CPBM (already described in Sects. 4 and 5) and produce an 9-yr reanalysis (from 1998
to 2006) of the North-Atlantic ecosystem. The ensemble is constructed using the same
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kind of assumption as in the previous example (in Sect. 6), by sampling an interannual
free model simulation (7 yr, between 1999 and 2005) every 2 days in a running window
of ±30 days around the date of interest (thus retaining 30 model states, every year),
which makes an ensemble of size m=7×30=210 model states.

Figure 13 shows the deciles of the resulting ensemble as a function of time for phyto-5

plankton (left panels) and nitrate (right panels) at 20◦ W 35◦ N (black dot in Fig. 14). This
fully describes the approximate piecewise linear anamorphosis transformation for this
location, which is defined in Eqs. (2) and (3) by a remapping of this set of deciles x̃k on
the corresponding Gaussian deciles zk . Consistently with our ensemble description of
the uncertainties, only the seasonal cycle is resolved, so that the transformation is kept10

the same from year to year. As in the previous example, the seasonal cycle is certainly
the first thing that needs to be taken into account in the description of the uncertainties.
The figure indeed clearly illustrates the extreme seasonal variations in the spreading of
the ensemble, in relation to the dynamics of the ecosystem. For instance, close to the
surface (Fig. 13, top panels), large phytoplankton concentrations (left panel) appear15

during the spring bloom (around day 90), together with larger associated uncertainties.
The bloom progressively depletes nitrates (right panel) until the surface concentration
becomes very low during the whole summer (between days 180 and 270), together
with very low associated uncertainties (according to our assumption). To close the
annual cycle, larger nitrate concentrations are then restored by vertical mixing during20

fall and winter (between days 270 and 45), when the primary production is reduced.
During the whole cycle, the uncertainties on both concentrations (which are positive
quantities) are clearly non-Gaussian, with the higher deciles (rk > 0.5) being further
away from the median than the lower deciles (rk < 0.5), especially during the transi-
tions between high and low concentrations. For instance, just before nitrates are fully25

depleted, the lower deciles and the median are already all close to zero, while the
higher deciles are still very significant. These non-Gaussian effects are first-order be-
haviours of the ecosystem uncertainties, which clearly illustrate the inadequacy of the
Gaussian model, and the usefulness of our approximate piecewise-linear anamorphic
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transformations to improve the description of the marginal probability distributions, as
well as their variations in time along the annual cycle. Moreover, the dynamical char-
acteristics of the spring bloom (amplitude, starting date,. . . ) are known to be very
heterogeneous in the ocean, so that the associated uncertainties require local trans-
formations to be properly described. For instance, figure 13 (bottom panels) shows the5

seasonal cycle of the ensemble deciles at the same horizontal location, but at a differ-
ent depth (41 m depth instead of the first model level). Here, the situation is completely
changed with respect to the surface, because the spring bloom is smaller, and nitrate
is not fully depleted during summer. This implies that the non-Gaussian description of
the uncertainties must also be very different. See in particular the uncertainty in the ni-10

trate concentration, which stays more symmetric around the median for the whole year.
Moreover, as soon as the bloom is terminated in the surface layers (around day 180),
more light becomes available at that depth, and a secondary bloom can occur dur-
ing summer, together with larger phytoplankton uncertainties as compared to surface
layers. The improvement in the local description of the marginal distributions already15

explains why the approximate anamorphosis algorithm described in Sect. 2 has been
so useful in the work of Fontana et al. (2011) to improve ocean colour data assimilation.

However, it is important to check that this improvement in the description of the
marginal probability distributions is not done at the expense of the joint probability dis-
tribution. And again, to evaluate if the dependence between random variables is better20

described by a Gaussian model before of after the anamorphosis transformations, we
look at the modification of the linear correlation coefficient. Figure 14 shows for in-
stance the PHY (top panels) and NO3 (bottom panels) horizontal correlation structure
with respect to PHY at 20◦ W 35◦ N, as obtained for the original variables (left panels)
and the transformed variables (right panels), based on the ensemble obtained for April25

19, i.e. the same result as displayed in Fig. 8 for the stochastic ensemble resulting
from wind random perturbations (described in Sect. 4). Concerning the PHY corre-
lation structure, the first thing that we observe is the same kind of anisotropy as in
Fig. 8, probably reflecting some basic horizontal structure of the ecosystem dynamics,
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even if the correlation radius is here much larger, because the wind variability (which
has been used in Sect. 4 to parameterize the statistics of wind perturbations) has
a smaller decorrelation scale than the ecosystem variability in this region. But despite
of this difference, the effect of anamorphosis is the same: a substantial increase of the
correlation radius, especially in the direction in which the correlation radius is the small-5

est. This reduced anisotropy of the correlation structure after anamorphosis indicates
a nonlinear dependence between the ecosystem behaviours across the frontal pattern.
Concerning the NO3 correlation structure (bottom panels), the horizontal pattern is not
much changed by the local anamorphosis transformations, but the value of the cross-
correlation with PHY is significantly increased. It is interesting to note that PHY and10

NO3 are here positively correlated (they were anticorrelated in Fig. 8), which is the sign
that, on April 19 (day 109 in Fig. 13), the short term variability dominates in the non-
stochastic ensemble. However, a closer analysis of PHY-NO3 cross-correlations shows
that they are often changing sign after the bloom event, in a way that is very heteroge-
neous in space and time. In addition to the improvement of the marginal distributions15

illustrated in Fig. 13 (in particular, the zero probability associated to negative concen-
trations) and to the increase of the correlation radius illustrated in Fig. 14, this ability of
the scheme to adjust in space and time to local statistical behaviours is certainly one
of the main reasons why it has been so helpful in the work of Fontana et al. (2011) to
improve the estimate of NO3 concentrations from ocean colour observations.20

8 Conclusions

Many kinds of ocean uncertainties cannot be accurately described using a Gaussian
model. This is particularly obvious in the examples of ecosystem uncertainties (in
Sects. 4, 5 and 7) and sea ice uncertainties (in Sect. 6), although this may also be
true for ocean dynamics uncertainties (as in the mixed layer depth example in Sect. 3).25

On the other hand, in these examples, a general non-Gaussian description of the joint
probability distribution would be impossible to identify from a moderate size ensemble,
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because the uncertainties occur in too many dimensions (curse of dimensionality).
Nevertheless, even with the available ensemble (a few hundred members in all ex-
amples described in the paper), it is certainly possible to go beyong the Gaussian
assumption in the description of the marginal distribution for any individual random vari-
able (including observation equivalents or indirect operational product). In this paper,5

we suggested that a very significant improvement can already be obtained with a very
simple non-Gaussian description of the marginal distributions (histograms), based on
a few quantiles of the ensemble (typically deciles, as in our examples). It is especially
interesting for large size applications, because it is (i) concise (described by qn values,
if n is the number of variables, and q, the number of quantiles), (ii) efficient (com-10

putational complexity proportional to nmlogm, if m is the size of the ensemble), and
(iii) often more accurate than the Gaussian description (based on the mean and stan-
dard deviation). More importantly, this simple histogram description can also directly be
used to perform a piecewise linear change of variable (anamorphosis transformation),
in such a way that each marginal distribution becomes approximately Gaussian. In15

these transformed variables, it is then possible to perform the ensemble observational
update consistently with our simple description of the marginal uncertainties, by apply-
ing the standard Gaussian algorithm, providing that the ensemble correlation structure
is preserved, or even improved, by the transformation.

In the paper, various examples were used to evaluate the effect of these local20

anamorphic transformations on the spatial correlation structure. The results indicate
that (i) the transformation is accurate enough to faithfully preserve the correlation struc-
ture if the distribution is already close to Gaussian, and (ii) the transformation has the
general tendency of increasing the correlation radius as soon as the dependence be-
tween random variables becomes nonlinear. These effects may be understood by25

observing that the linear correlation coefficient (Pearson) between the transformed
variables corresponds to a nonlinear measure of correlation between the original vari-
ables, which is very similar to the rank correlation (Spearman). On the other hand,
even if the method finds its full justification with a stochastic ensemble description of
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the uncertainties, the last two examples show that it may also be useful with the non-
stochastic ensembles (resulting for instance from the system past variability) that are
often used in present-day operational systems to reduce the numerical cost of data as-
similation (until truly stochastic solutions become affordable). In both cases, the most
important consequence for data assimilation of this increase in the correlation magni-5

tude is a significant reduction in the number of degrees of freedom in the uncertainties
(in a Gaussian sense), so that a better estimation accuracy can be obtained from
a given observation network. And from a more general point of view, this also means
that it may sometimes be rewarding to put some time and numerical effort to improve
the statistical description of the uncertainties, rather than giving too much confidence10

to oversimplistic assumptions.

Appendix A

Implementation issues

All examples of local anamorphic transformations described in this paper have been15

performed using specific tools that we have implemented in the SESAM public soft-
ware2, except the example of Sect. 6, which has been perfomed using an independent
implementation of the algorithm in the Mercator assimilation system (SAM2). More
specifically, the results displayed in Figs. 3–10, 13 and 14 have been obtained using
four SESAM tools:20

1. Computation of the quantiles of the input ensemble, with the SESAM
commandline:

sesam -mode anam -inxbas [ens dir]
-outxbasref [quant dir]

2http://www-meom.hmg.inpg.fr/SESAM
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where [ens dir] is a directory containing the input ensemble forecast (as a set of
NetCDF files, using the SESAM naming conventions), and [quant dir], a direc-
tory containing as an input, the definition of the quantiles (an ASCII file with the
rk , k = 1,...,q). From this, SESAM computes the (local) quantiles of the ensem-
ble x̃k , k = 1,...,q (as a set of NetCDF files, in the directory [quant dir]), linearly5

interpolating between successive ensemble members, if necessary.

2. Local anamorphic transformation of the input ensemble, with the SESAM
commandline:

sesam -mode anam -inxbas [ens dir]
-inxbasref [quant dir]
-outxbas [aens dir]
-typeoper +

where [ens dir] is a directory containing the input ensemble forecast, and
[quant dir], a directory containing the quantiles x̃k , k = 1,...,q of the ensemble10

(as obtained from the previous tool), and, as an additional input, the quantiles of
the target distribution (an ASCII file with the zk , k = 1,...,q). From this, SESAM
computes the transformed ensemble (as a set of NetCDF files, in the directory
[aens dir]), by linearly interpolating between the zk using Eq. (2). In this way,
the transformation can easily be performed towards any target distribution (by15

just changing the ASCII file with the zk), in particular towards the Gaussian dis-
tribution (as in most examples presented in this paper) or towards the uniform
distribution (using the same file for the zk and for the rk) as in the middle pan-
els of Figs. 6 and 7. (The backward transformation of Eq. (3) can be performed
similarly by replacing the + sign by a – sign in the commandline.)20
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3. Computation of the EOFs of the ensemble, with the SESAM commandline:

sesam -mode geof -inxbas [(a)ens dir]
-outxbas [(a)eof dir]

where [(a)ens dir] is a directory containing the input or transformed ensemble,
from which SESAM computes the EOFs (as a set of NetCDF files, in the direc-
tory [(a)eof dir]). This tool may be useful to obtain an orthogonal basis of the
linear subspace spanned by the (original or transformed) ensemble forecast, or to5

reduce the rank of the ensemble covariance matrix (by discarding the directions
with negligible variance). No rank reduction has been performed in the examples
described in this paper.

4. Computation of the correlation structure, with the SESAM commandline:

sesam -mode corr -inxbas [(a)eof dir]
-outvar [corr file]
-incfg [cfg file]

where [(a)eof dir] is a directory containing the EOFs of the original or transformed10

ensemble (or the columns of any other square root of the ensemble covariance
matrix), and [cfg file] is a configuration file describing the reference variable (an
ASCII file, with the name of the variable, and the grid coordinates). From this,
SESAM computes the multivariate correlation structure with respect to the refer-
ence variable (as a NetCDF file [corr file] providing the corresponding column of15

the correlation matrix). This is the kind of result that is mostly displayed through-
out this paper.

Hence, only four SESAM commandlines have been sufficient to produce all kinds of
result that have been presented in this paper, for a variety of oceanographic applica-
tions. The first one (1) provides the histogram description of the marginal uncertainties.20
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This is used by the second one (2) to perform the piecewise linear local anamorphic
transformation, as a preprocessing to any operation taking profit from Gaussianity, like
the computation of EOFs (3), the diagnostic of the linear correlation structure (4) or
the linear observational update (not shown here). In this way, the same study can be
easily repeated to any new oceanographic problem, to check if the same conclusions5

apply. In our view, the simplicity and modularity of the implementation is an additional
argument speaking in favour of the approximate algorithm described in Sect. 2.
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Fig. 1. Approximate piecewise linear Gaussian anamorphosis transformation (thick blue curve),
remapping the deciles x̃k of a 200-member random sample of the Gamma distribution Γ(k,θ)
(top histogram) on the Gaussian deciles zk (left histogram), as compared to the exact transfor-
mation (in red) transforming the exact Γ(k,θ) (red curve superposed to the top histogram) into
N (0,1) (red curve superposed to the left histogram).
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Fig. 2. Relative entropy between the transformation of the exact Γ(k,θ) and N (0,1), using
various approximations of the transformation function: the histogram approximation (left panel),
as a function of the number q of classes in the histogram, the Gaussian mixture approximation
(middle panel), as a function of the number q of nearest neighbours, the Hermite polynomial
development (right panel), as a function of the number q of superposed polynomials. In all 3
cases, the relative entropy is computed by numerical integration over the same interval |z|<
2.576, except in the 3rd case (polynomial development) for which the subintervals with zero
density (due to the non-bijectivity of the approximation) have been removed.
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Fig. 3. SST horizontal correlation structure with respect to SST at 114◦ W 0◦ N (Eastern Equa-
torial Pacific), without anamorphosis (left panel), and after local anamorphosis transformations
(right panel).
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Fig. 4. MLD (top panels) and SST (bottom panels) horizontal correlation structure with respect
to MLD at 114◦ W 0◦ N (Eastern Equatorial Pacific), without anamorphosis (left panels), and
after local anamorphosis transformations (right panels).
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Fig. 5. Scatterplot of MLD vs. SST at 114◦ W 0◦ N (Eastern Equatorial Pacific), without anamor-
phosis (left panel), and after local anamorphosis transformations (right panel).
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Fig. 6. Deciles of the ensemble for phytoplankton (top panels) corresponding (from left ot right)
to rk = 0.2, 0.5 (median) and 0.8, and illustration of one of the ensemble members (bottom
panels): the phytoplankton map (left panel), the rank in the ensemble (middle panel), and the
transformed map (right panel) after Gaussian anamorphosis.
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Fig. 7. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure
with respect to phytoplankton at 37.5◦ W 50.8◦ N (North Atlantic), as obtained for the original
variables (left panels), their local rank in the ensemble (middle panels), and the transformed
variables after Gaussian anamophosis (right panels).
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Fig. 8. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure
with respect to phytoplankton at 20◦ W 35◦ N (North Atlantic), without anamorphosis (left pan-
els), and after local anamorphosis transformations (right panels).
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Fig. 9. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure
with respect to phytoplankton at 11.7◦ W 36◦ N (North Atlantic), without anamorphosis (left pan-
els), and after local anamorphosis transformations (right panels).
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Fig. 10. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure
with respect to phytoplankton at 86◦ W 23.8◦ N (Gulf of Mexico), without anamorphosis (left
panels), and after local anamorphosis transformations (right panels).
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Fig. 11. Probability that the ocean is free of ice [p(f =0)], as computed from the non-stochastic
ensemble for 15 March (left panel) and 11 September (right panel).
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Fig. 12. Ice concentration horizontal correlation structure with respect to a reference location
at 15◦ W 75◦ N (black dot) for 15 March (top panels) and 11 September (bottom panels), without
anamorphosis (left panels), and after local anamorphosis transformations (right panels).
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Fig. 13. Time variability of the ensemble deciles rk = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 at
20◦ W 35◦ N (black dot in Fig. 14), as obtained for phytoplankton (left panels) and nitrate (right
panels) close to the surface (top panels) and at 41 m depth (bottom panels). The further from
the median (rk =0.5, thick central curve), the thinner the curve.
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Fig. 14. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation struc-
ture with respect to phytoplankton at 20◦ W 35◦ N (North Atlantic), without anamorphosis (left
panels), and after local anamorphosis transformations (right panels).
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